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ABSTRACT
Source counting (SC) in an indoor environment is an impor-
tant problem in computational auditory scene analysis. How-
ever, the problem is challenging, especially when reverbera-
tion and ambient noise are present in the environment. To ad-
dress this problem, we propose an augmented Bayesian non-
parametric (ABNP) clustering algorithm for source counting
based on sound intensity (SI) captured by a small aperture
microphone array. The core idea is to incorporate an infinite
Gaussian mixture model (IGMM) and a time-frequency (TF)
augmented weight selection and update scheme for sound in-
tensity estimation. The use of IGMM enables the exemp-
tion of the maximum number of sources assumed in previous
methods. Experiments on both simulated and real-world data
show the improved performance by the proposed method as
compared with the state of the art baseline methods.

Index Terms— Source counting (SC), Bayesian nonpara-
metric (BNP), sound intensity (SI), microphone array

1. INTRODUCTION
Acoustic signal processing problems, such as multi-source lo-
calization [1], blind source separation [2], speaker recogni-
tion [3], and sound event detection [4], have important ap-
plications in many practical systems. A pivotal task in these
domains is the estimation of the number of active sources,
known as source counting (SC), which is often required by
these systems in their operation [5, 6]. To address the SC
problem, a variety of algorithms have been developed [5–12].
An early approach was based on the information theoretic
criteria [8], such as the minimum description length (MDL).
However, this method requires the assumption of spatially and
temporally white noise, which might not be valid in practical
situations due to the changing adverse environments and the
non-ideal array configurations, which may lead to inaccurate
estimation of the number of active sources [9, 10].

To overcome this limitation, several methods have been
proposed by exploiting the directions of arrival (DOAs) of
the sources. For example, Pavlidi et al. [11] developed three
SC algorithms based on histogram of the DOA estimations,
namely, a peak search (PS) approach, a linear predictive cod-
ing (LPC) approach, and a matching pursuit (MP) approach.
Araki et al. [12] introduced a method to model the distribution
of DOAs with Gaussian mixture models (GMMs), with their
parameters learned by expectation maximisation (EM). With
this method, the total number of sources can be estimated via
counting the number of GMM components. A sound intensity
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(SI) based method was proposed in [13], which exploits first
order differential microphone arrays (DMAs) for their com-
pact size and high gain. This offers the potential to meet the
increasing demand for portable and lightweight device in real
world. However, it is prone to degradation caused by room
reverberation and ambient noise. In addition, a common lim-
itation of the aforementioned methods is that the maximum
number of sources cannot exceed a value predefined by users.

To address the above limitations, we present a new aug-
mented Bayesian non-parametric (ABNP) clustering algo-
rithm for source counting based on sound intensity estima-
tion via a small aperture microphone array. The proposed
approach consists of two steps. First, it leverages the theory
related to SI and the sparsity property of speech signals which
enables the use of a small-sized array to estimate the DOAs at
each time-frequency (TF) bin. This array is composed by two
orthogonal first-order DMAs, offering potentials to satisfy
the practical requirement for array miniaturization.

Second, we design an ABNP algorithm without the prior
knowledge about the maximum number of sources, taking
the estimated SI from the first step as input. This design of
this step carries two novel aspects. On the one hand, the
BNP clustering method, which assumes an infinite number
of sources, is employed to estimate the number of sources us-
ing the DOAs derived from the array measurements. On the
other hand, to mitigate the adverse impact of noise and rever-
beration, we design a TF augmented weight selection and up-
date framework based on the infinite Gaussian mixture model
(IGMM), thereby improving its performance in adverse envi-
ronments.

In this way, sources can be successfully counted via com-
pact arrays under diverse acoustic conditions. Experiments
on public-domain artificial and real datasets show the supe-
rior performance of the proposed method as compared with
baseline methods (e.g. BNP, MP, LPC, PS and EM).

2. SIGNAL MODEL
A small-sized array consisting of four omnidirectional sen-
sors (Mm,m = 1, . . . , 4) is adopted for sound source capture
as shown in Fig. 1. This aperture array can be decomposed
into two orthogonal first-order DMAs, namely M1 and M3
along the x-axis, and M2 and M4 along the y-axis. Both of
the sizes of the two DMAs are the same and denoted by D.

Suppose that I far-field speech sources in a reverberant
enclosure impinge on the array. Herein, the DOAs are de-
fined with respect to the positive x-axis, which implies ϕi ∈
[−π, π), i = 1, . . . , I . Using the short-time Fourier transform
(STFT), the source signals received at the mth sensor can be
modeled as
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Fig. 1. Configuration of the sensor array constructed by two
orthogonal first-order DMAs.

Pm(t, f) =

I∑
i=1

Hmi(t, f)Si(t, f) + Vm(t, f), (1)

where t is the time frame index and f is the frequency.
Si(t, f) is the signal induced by one of the I speech sources at
ϕi direction from the centre O of the sensor array, Hmi(t, f)
is the room impulse responses (RIRs) from the ith source
to the mth sensor, and Vm(t, f) is the additive background
noise. Since speech signals are considered sparse in the time-
frequency (TF) domain, at each TF bin, it could be assumed
that only one source is dominant [1]. Thus, according to the
output signal of DMAs and the theory on sound intensity
(SI) [13], we can estimate the ϕ̂(t, f) at TF bin dominated by
each source as the observations of DOAs. The ϕ̂(t, f) can be
represented as

ϕ̂(t, f)=arctan

{
Re [Ioy(t, f)]

Re [Iox(t, f)]

}
=arctan

{
Im

{
P0(t, f) [P4(t, f)−P2(t, f)]

∗}
Im {P0(t, f) [P3(t, f)−P1(t, f)]∗}

}
,(2)

where Iox(t, f) and Ioy(t, f) represent x− and y− compo-
nents of the complex SI, respectively. Re(·) denotes the real
part of operation, the superscript (·)∗ denotes the complex
conjugate, Im(·) denotes the imaginary part of operation.
P0(t, f) is the the sound pressure at the coordinate origin,
which can be estimated via the average of the sound pres-
sures at all sensors [13],

P0(t, f)=
1

4
[P1(t, f) + P2(t, f) + P3(t, f) + P4(t, f)].(3)

In practice, I is often unknown and needs to be estimated
from the array measurements.

3. PROPOSED METHOD
To estimate I , we develop an augmented BNP [14] clustering
algorithm based on the IGMM [15] for SC using DMAs.
3.1. IGMM Model
According to (2), we use the estimated DOAs, namely
{ϕ̂(t, f)} = {ϕ̂1, · · · , ϕ̂n, · · · , ϕ̂N}, as the observation
inputs to the IGMM model. Thus, the probability den-
sity function (PDF) of ϕ̂n, generated by the component l
(l ∈ (1, · · · ,∞) with l being unknown) at the nth bin is
given by

p(ϕ̂n|µl, σ
2
l , kn) =

1√
2πσ2

l

e
−(ϕ̂n+2πkn−µl)

2

2σ2
l , (4)

where the parameter {µl, σ
2
l } obeys Gaussian Gamma distri-

bution, which represents as

{µl, σ
2
l |Θl} ∼ N(µl|χl, σ

2
l /ξl)Ga(σ−2

l |ηl, γl), (5)

where Θl = {χl, ξl, ηl, γl} represents the hyperparameters
of the IGMM, N and Ga represents the Gaussian and Gama
distribution, respectively, and kn is an integer parameter ac-
counting for the shift of ϕ̂n.

Note that, here, we use Chinese Restaurant Process
(CRP) [15] as the prior information to restrict the IGMM.
Then, the probability of the class label zn of the nth obser-
vation belonging to an existing class or a new class can be
expressed as,

p(zn = l|z\n)=


nl

n+ α− 1
, l = 1, · · · , L

α

i+ α− 1
, l = lnew = L+ 1

(6)

where nl is the number of DOA estimates assigned to the nth
component, and z\n is set of class labels without the nth DOA
estimate, and the parameter α is the concentration parameter
of the Dirichlet process [16].

Then, the likelihood function is obtained by the marginal-
ized integral of the product of (4) and (5),

p(ϕ̂n|ϕ̂\i, zn = l,k\n, z\n,Θ
a
l )

∝
K∑

kn=−K

T2ηa
l

[
(ϕ̂n + 2πkn)

∣∣∣∣χa
l ,

γa
l (ξ

a
l + 1)

ηal ξ
a
l

]
,(7)

where ϕ̂\i denotes the set of all the DOA measurements with-
out θi, k\n is the set of all the shifts without kn, z\n de-
notes the set of class labels without the nth label zn, and
Θa

l = {ξal , ηal , χa
l , γ

a
l } is the set of hyperparameters for com-

ponent l at the current iteration a.
Next, we use Gibbs sampling [16] to approximate the pos-

terior probability of zn = l, i.e. the class label zn belonging
to the mixture component l, given all ϕ̂i and Θa

l , which can
be calculated as follows

p(zn = l|ϕ̂n, ϕ̂\n,k\n, z\n,Θ
a
l )

∝ p(zn = l|z\n)p(ϕ̂n|ϕ̂\n, zn = l,k\n, z\n,Θ
a
l ).(8)

3.2. Augmented BNP Clustering
The IGMM model can adaptively adjust the number of classes
and parameters required for model construction based on the
observation values (namely, the estimated ϕ̂). To be specific,
the first observation is established as the first class, and sub-
sequent observations are either established as new classes or
are assigned to existing classes. As the class becomes larger,
subsequent observations are more likely to be assigned to that
class. Clearly, the previous observations are more likely to
become the main components of the mixture model, while
subsequent observations can be assigned based on the model
established by previous observations. The sorting of the ob-
servation sequence can have a certain impact on the clustering
results based on this model.

However, the sorting of observation values is usually ran-
dom, and not every observation is valid. The reason is that
the estimated ϕ̂ is prone to the corruptions by the ambient
noise and reverberation, especially using the DMAs. This
means that if there are invalid or erroneous observations at



the beginning, the established mixture model is likely to de-
viate from the overall distribution of the observations, which
may degrade the performance of source counting. To tackle
this issue, we propose a novel augmented BNP clustering ap-
proach, which can be divided into two steps.

Step 1: In this step, we design a TF augmented weight
selection scheme for obtaining reliable TF bins for source
counting, based on the property that speech signals are often
sparse in the TF domain. A higher value indicates a stronger
reliability of the TF bins, while a lower value is less reliable
and could be from noise.

With the instantaneous DOA estimates (ϕ̂) and the instan-
taneous power of signals received by the sensors, the aug-
mented weights AW (t, f) can be calculated as

AW (t, f) = 3 [Pow(t, f) · Pr(t, f) · V ar(t, f)]
2
,(9)

where Pow(t, f) denotes the weight of power at the TF
bin, Pr(t, f) denotes the weight of power ratio [17], and
V ar(t, f) denotes the weight of local DOAs variance [18],
determined via the sigmoid compression, respectively

Pow(t, f) = 1/
[
1 + e−α1[logE(t,f)−β1]

]
, (10)

Pr(t, f) = 1/
[
1 + e−α2[logE(t,f)/E(t,f−1)−β2]

]
, (11)

V ar(t, f) = 1/
[
1 + e−α3[log σ2

ϕ(t,f)−β3]
]
. (12)

where E(t, f) = |P0(t, f)|2, σ2
ϕ(t, f) is the local variance of

ϕ(t, f), and the α1, α2, α3 and the β1, β2, β3 are the sigmoid
slope and center parameters, respectively [19].

Step 2: To obtain the new sequence for SC, we select and
reorder the reliable observations with the largest augmented
weights, as described below.

First, we choose Q observations ϕ̂
′

q(q = 1, · · · , Q) with
the largest AW (t, f). Second, we perform peak search of
the histogram constituted by all the ϕ̂

′

q and obtain the pre-
estimation ϕ̂p. Third, we calculate the difference between
the ϕ̂

′

q and ϕ̂p and obtain the minimum difference diffq
mim.

Fourth, we rearrange the observations ϕ̂
′

q in ascending order
of diffq

mim and get the new sequence ϕ̂
′′

q .
In the following, with the new ϕ̂

′′

q , we can obtain the pos-
terior probability by (7) and estimate the class label of the
current observation by the maximum posterior probability.
Meanwhile, in order to increase the dominant role of reliable
TF bins in the hyper-parameters Θa

l updating process (a is
the iteration number with initial value a = 0), the AW (t, f)
is brought into and the new update formulas are expressed as,

ξ
(a+1)
l = ξ

(a)
l +AWq, (13)

η
(a+1)
l = η

(a)
l +

1

2
AWq, (14)

χ
(a+1)
l =

1

ξ
(a+1)
l

[
ξ
(a)
l χ

(a)
l +AWq(ϕ̂

′′
q + 2πkq)

]
, (15)

γ
(a+1)
l =γ

(a)
l +

1

2

[
AWq(ϕ̂

′′
q + 2πkq)

2 + ξ
(a)
l (χ

(a)
l )2 −

ξ
(a+1)
l (χ

(a+1)
l )2

]
, (16)

In addition, AW sum
l denotes the sum of the augmented

weights for the lth class of the DOA estimation. The number

of AW sum
l that is greater than the threshold thAW is taken as

the estimated number of speakers, namely, I . The threshold
thAW can be calculated as

thAW = 0.5[mean(AW sum
l ) +

√
var(AW sum

l )], (17)

where mean(·) and var(·) represent taking the mean and
variance over its argument, respectively.

By using this scheme, reliable TF bins can be selected and
used for clustering and estimating the number of sources. The
specific analysis of this framework is given in Section 4.2.
The proposed ABNP-DMAs is summarized in Algorithm 1.

Algorithm 1 ABNP-DMAs
Input: Θ0

l , α1, α2, α3, β1, β2, β3.
1: for Pm(t, f) do using (2) and (3) to estimate the ϕ̂(t, f);
2: for ϕ̂(t, f) do using (9), (10), (11) and (12) to

calculate the AW (t, f);
3: choosing ϕ̂

′

q with the largest AW (t, f);
4: calculating the diffq

mim and rearranging the ϕ̂
′

q

in ascending order get new sequence ϕ̂
′′

q ;
5: for ϕ̂

′′

q do using the IGMM and calculating the
posterior probability by (7) and (8);

6: update the hyper-parameters Θa
l with

AW (t, f) by (13), (14), (15) and (16);
7: Input the updated hyper-parameters Θa

l to
the IGMM. Cluster and obtain the estimated
number of speakers I .

8: end for
9: end for

10: end for

4. EXPERIMENTAL EVALUATIONS

4.1. Datasets and Set up
The performance of the proposed ABNP-DMAs is evaluated
and compared with the traditional BNP method [1, 14] and
several baselines including the MP [11, 20], LPC [11, 21],
PS [11] and EM [12, 22] methods in both simulated and real
room environments. Note that, we consider 1 to 4 sound
sources, and the maximum and minimum interval between
speakers is 25◦ and 120◦, respectively.

The dimension of the simulated rectangular room is 6 m
× 6 m × 4 m. To generate the RIRs [23] from speaker sources
to sensors, we use a software that is based on the well-known
image method for simulating a reverberant room [24]. The
DMAs with M = 4 equidistant omnidirectional sensors and
the radius of r = 0.02 m are placed in the center of the room
at (3, 3, 1) m, coinciding with the origin of the x and y axes.
The speakers are located at the same height as the microphone
array with distance from the speaker to the center of the array
being 2 m. The additive noises on the sensors are mutually
uncorrelated white Gaussian, and also are uncorrelated with
the speech signal. The sound speed is 340 m/s. Speech signals
of 1 s length, sampled at 16 kHz, are chosen randomly from
the well-known TIMIT speech database [25]. For all the eval-
uated algorithms, the STFT is calculated using a Hamming
window of 1024 samples with 50% overlap between consec-
utive frames.

The dimensions of the real rectangular conference room
is approximately 9.7 m × 7.05 m × 3 m with a reverberation
time of 350 ms. A DMAs was placed horizontally around the



center of the room, and the other conditions resembled those
in the above simulations.

The corresponding parameters of the proposed method
are set empirically to ξ

(0)
l = 0.01, η

(0)
l = 0.01, χ0 =∑Q

q=1 AWqϕ̂
′′
q∑Q

q=1 AWq
, and γ0 =

∑Q
q=1 AWq(ϕ̂

′′
q −χ

(0)
l )2∑Q

q=1 AWq
. We set Q to

be equal to 20% of the total number of TF bins. α1 = −1,
α2 = −6, α3 = 3, β1 is the logE(t, f) value of 640 TF bins
in descending order, β2 = −0.5, β3 is the log σ2

ϕ(t, f) value
of 320 TF bins in descending order.

To facilitate evaluations, we use source counting success
rate (SR) as performance metrics, which is defined as:

SR = Ĉs/Cs × 100%, (18)

where Ĉs is the number of experiments with counting success
and Cs is the number of simulated or real-world experiments.

4.2. Results in Simulated Experiments
Analysis of TF Augmented Scheme: Fig. 2 shows the
histogram comparison of TF bins selection with RT60 =
0.4 s, SNR=15 dB. Herein, we use four sources located
at [−150◦,−30◦, 60◦, 125◦] as an example. Comparing
Fig. 2(a) and Fig. 2 (b), it is clear that the latter can pro-
vide more reliable TF bins for the following algorithm.
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Fig. 2. The histogram before and after the TF selection.
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Fig. 3. The IGMM after various iterations.

Fig. 3 shows the diagram of IGMM obtained after different it-
erations by the new sequence ϕ̂

′′

q . From the results, we can see
that in the 1st iteration, the first class is established. Then, the
second, third and fourth classes are established in the 2nd, 4th
and 12th iterations, respectively. An interesting phenomenon

can also be noticed in the figure, that is the magnitude grad-
ually increases until the 140th iteration and after that it de-
creases until the end of iterations. The reason is that the ob-
served data in the cluster are close to each other and are more
concentrated, so the variance of the components is smaller,
and the posterior probability is larger. When the observa-
tions increase, the distance between the observations within
the classes increases, and the posterior probability decreases.
Effect of Noise and Reverberation: Fig. 4 shows the perfor-
mance of each method for different number of sources under
noise and reverberation environments. The proposed ABNP
method offers better source counting success rate as com-
pared with BNP, MP, EM, LPC and PS methods, especially
in adverse environments. This is because the proposed ap-
proach can select the reliable TF bins which are less affected
by noise and reverberation, and improve the source count-
ing success rate with the help of augmented BNP processing.
Note that, except for the traditional BNP and our proposed
method, other the baseline methods need the maximum num-
ber of speakers as prior knowledge, which manifests the su-
periority of the proposed method.

One Source Two Sources Three Sources Four Sources

Number of Sources

0

20

40

60

80

100

S
R

 (
%

)

ABNP MP EM LPC PS BNP

(a)RT60=0.15s, SNR=25dB

One Source Two Sources Three Sources Four Sources

Number of Sources

0

20

40

60

80

100

S
R

 (
%

)

ABNP MP EM LPC PS BNP

(b)RT60=0.55s, SNR=10dB

Fig. 4. The performance for different number of sources.
4.3. Results in Real-World Experiments
Fig. 5 shows the source counting performance achieved on
the real dataset. As can be seen, the results behave in a sim-
ilar manner to those found in the simulation results above.
The results show good performance of our proposed ABNP
method, which indicates the effectiveness of using TF aug-
mented weight selection and update framework based on the
BNP clustering approach in a practical environment.
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Fig. 5. The results for real-world data.
5. CONCLUSION

We have presented an ABNP clustering algorithm for source
counting via a small aperture array, where we use a TF aug-
mented weight selection and update scheme based on IGMM
for the source counting problem. Experiments in both simu-
lated and real environments demonstrated the effectiveness of
the proposed method compared with baseline methods.
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